Lecture 6: Isospin and SU(3)

e The Hadronic Spectrum

e |sospin and Scattering Relations

e Resonances: The A

e Strangeness

e Charge and the Gell-Mann Nishijima Eq
e Group Theory Interpretation

e SU(2) and SU(3)

e Quark Model Interpretation



The Hadronic Spectrum

e J only 3 generations of leptons (&, |4, T and their respec-
tive neutrinos), but hundreds of hadrons
e Physicists soon realized that it's not sensible to consider
these hadrons fundamental
— Look for basic patterns in masses, spins, charges

— Look for rules to relate interaction rates and decay rates of dif-

ferent hadrons in terms of internal quantum numbes

e Today we know hadrons are composite particles made of
guarks

— Spectrum of observed particles analog of period table of ele-
ments

— Because 0 large at low mom transfer, the theory is not pertur-
bative

— We cannot calculate the wave functions of the quark bound

states (hadrons)

— We'll see in a few weeks that bound states of heavy quarks can

give us clues to the shape of the potential

e In 1960’s no one knew whether quarks were real or just
mathematical constructs

— But we’ll use our modern knowledge to inform our discussion

and terminology



Classification of Hadrons

e Mesons (integer spin) vs Baryons (half integer spin)
— Baryons must be pair produced, but mesons can be produced
singly
e Baryons

— Earliest examples: pand n

— Fact that both appear to see same nuclear force and that the
masses are so close together (mp = 93820 MeV, m, = 93957
MeV) make it natural to think of them as 2 states of same parti-
cle: the nucleon N

— Define isospin (with same algebra as spin: SU(2)). Then N has
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e Mesons

— Earliest example: The pions

— Three charges o, T , 7T so | = 1
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e Note: For N, Q = I,4 3 while for TQ = I,
These are special cases of a more general rule we’ll get

to soon



Example: TiN scattering

e Can use isospin to relate different reaction rates

e Each value of isospin that is possible provides an independent ma-

trix element
e For TIN scattering | = 1®1 = % =1 = %,% so d 2 indep matrix
elements L . 2 2
i E<5}H ) %= <§]H}§>

e Examples of decomposition
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and so forth
e Thus
o(m p— 1) ~ |2
o(mn—mn) ~ \}Mg+gf7\/[;|2
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We can determine all the scattering rates in terms of these 2 ampli-

tudes



More on pN scattering
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e Large bumps: “resonances”
e Eg: near 1236 MeV
— Width ~ 120MeV = short lifetime: AEAt ~h:
A 6.58x 10-%?2 MeV sec
At~ — ~5x 10?4 sec

AE 120 MeV

This resonance is called the A
8

e Four states: | =3/2: ATT ATT AT, A0 A~

e ThereisNOA™—



Strangeness

e In 1950’s a new class of hadrons seen

— Produced in TIp interaction via Strong interactions

— But travel measureable distance before decay, so decay is weak

Why should this happen? There must be conserved quantum number preventing

the strong decay
e Example:

T p— AK°

— A% — prr with lifetime T = 2.6 x 10710 sec
— KO — 1tt 10 with lifetime T = 0.8958x 1019 sec

e Assign a new quantum number called strangeness to the
A and K°

e By convention A has S= —1 and K° has S= 1 (an un-

fortunate choice, but we are stuck with it)



Strangeness and |z

e \We've already seen that within an isospin multiplet, dif-

ferent |, have different charge

e Can generalize this observation for all light quark (u,d,s)

multiplets:
B+S

Q=+

Define hyperchargeY =B+ S

e This is called the Gell Mann-Nishijima Eq

e Note: Because Q is determined from I3, EM interactions
cannot conserve isospin, but do conserve I3

— This is analogous to the Zeeman effect in atomic physics where
a B field in z direction destroys conservation of angular momen-

tum, but leaves J, as a good quantum number

e EM coupling ~ 1% so effects of isospin non-conservation
are small and can be treated as perturbative correction

to strong interaction



Group Theory Interpretation

<

e Describe particles with same spin, parity and charge
congugation symmetry as members of a multiplet with
different |, and Y

e Will define (next 2 pages) raising and lowering operators
to navigate around the multiplet

e Gell Man and Zweig suggested that patterns of multiplets
could be explained if all hadrons were made of quarks

— Mesons: 00 3®3=1®8
— Baryons: qqq 3®3®3=168H83 10

e In those days, 3 flavors (extension to 6 discussed later)



Introduction to Group Theory (via SU(2))

e Let’s start by reviewing SU(2) Isospin
e Fundamental representation: a doublet

(i) =) ()

e Define rotation in isospin space in terms of infinitesmal
generators of the rotations
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e The T matrices satisfy commutation relations
1

1 .
[QT“QTJ] =1 & jkTk

These commutation relations define the SU(2) algebra

e We can have higher representations of SU(2): N x N
matrices with N =21 + 1

e Also, there is an operator that commutes with all the T’s:
2_(Lee_ls 00
I —(2'[) —4Z|T,

and there are raising and lowering operators
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Extension to SU(3))

e SU(3): All unitary transformations on 3 component com-
plex vectors without the overall phase rotation (U(1))

ulu=uut=1 detu=1

U = exli i AaBa/2]
a=1

e The fundamental representation of SU(3) are 3 x 3 ma-

trices
010 0 —i O 1 0 O
M=| 100 M=|i 0 0 M=| 0 -1 0
000 0 0 O 0 0 O
001 0 0 —i 000
M=| 000 M=| 00 O N=| 00 1
100 i 0 0 010
00 O 10 O
AM=] 0 0 —i )\8—% 01 O
0i O 00 -2

e Commutation relations:

M do] e Ao
2> - abc2

where fip3=1, f1a7 = foag = fos7 = faas = 3, fi1s6=
fagr=—3 and fasg= fers=v/3/2.



SU(3) Raising and Lowering Operators

SU(3) contains 3 SU(2) subgroups embedded in it

Isospin: F1 P Fs
U-spin: Fg F7 V3R—Fs
V—spin: 4 F5 V3Fg+F3

For each SU(2) subgroup we can form the usual raising and lowering operators

Any two of the three subgroups are enough to navigate through all the members

of the multiplet

Fundamental representation: A triplet
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e Define group structure of the state by starting at one corner and using raising and

lowering operators

V)P nax = 0
('—)1+1(ﬂ"nax _ 0

structure : (p,Q)

e So quarks (u,d,s) have p= 1, = O while antiquarks (T,d,3) have p=0, g=1



Combining SU(3) states (2 quarks)

e Combining two SU(3) objects gives 3 x 3 = 9 possible states

uu

%(udjtdu) %(ud—du)
dd

%(usﬂL su) %(us— su)
ss

\%(ds+ sd) %(ds— sd)
6 3

3®3 = 603

e We know that the triplet is a 3 from its I3 and Y:



Combining SU(3) states (a 3™ quark)

¢ 30323=3®(6¢3)=10®8us®8uadl

e Start with the fully symmetric part of the 6:

uuu 3 such states
%S(dduqL udd-+dud) 6 such states
L (dsu+uds+ sud+sdutdus+usd) 1 such state

V6
Ten states that are fully symmetric

e Now, the mixed symmetry part of the 6:

75 (ud+duju—2uud 8 such states

Eight states like this
e Now on to the 3;
% [(ud—du)s+ (usd—dsu) + (du—ud)g 8 such states
Eight states like this

e Final state, totally antisymmetric



Combining SU(3) states (qQ)

e Start with it = ud

e Using:
| _juy = —|d)
| _[d) = +[0)
We find:
I_|ud) = —|uu)+|dd)
= V2]l=113=0)

= —(1dd) ~ )

Doing this again: TT =d T

e Now add strange quarks: 4 combinations
s ds Us ds
K+ KO K= KO
e One missing combination:
(dd+utu—2ss)/v6 =n'

These 8 states are called an octet

e One additional independent combination: the singlet

state B
(uti+dd + ss)//6



